The Amazon rainforest could approach a tipping point, which could lead to a large-scale collapse with serious implications for the global climate system.
Photo: © Boris Sakschewski, PIK

Amazon rainforest at the threshold – loss of forest worsening climate change

The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires.

The Amazon rainforest could approach a tipping point, which could lead to a large-scale collapse with serious implications for the global climate system. A recent Nature study by an international research team including scientists from the Potsdam Institute for Climate Impact research (PIK), in Potsdam, Germany, reveals that up to 47 per cent of the Amazonian forest is threatened and identifies climatic and land-use thresholds that should not be breached if Amazon is to be kept resilient.

“The Southeastern Amazon has already shifted from a carbon sink to a source –meaning that the current amount of human pressure is too high for the region to maintain its status as a rainforest over the long term. But the problem doesn't stop there. Since rainforests enrich the air with a lot of moisture which forms the basis of precipitation in the west and south of the continent, losing forest in one place can lead to losing forest in another in a self-propelling feedback loop or simply ‘tipping’,” states PIK scientist Boris Sakschewski, one of the authors of the study.

Up to 47 per cent of the Amazon rainforest threatened by droughts and fires

Recent stress from increased temperatures, droughts, deforestation and fires even in central and remote parts is weakening the Amazon's natural resilience mechanisms, pushing this system towards a critical threshold. The study finds that by the year 2050, 10 to 47 per cent of the Amazonian forests will be threatened by increasing disturbances, risking to cross a tipping point.

Based on a large body of scientific results, the researchers identify five critical drivers connected to this tipping point: global warming, annual rainfall amounts, the intensity of rainfall seasonality, dry season length and accumulated deforestation. For each of these drivers, they suggest safe boundaries to keep the Amazon resilient.

“We found, for example, that for mean annual rainfall below 1,000 mm per year, the Amazon rainforest cannot exist. However, below 1,800 mm per year, abrupt transitions from rainforest to a savannah-like vegetation become possible. This can be triggered by individual droughts or forest fires, which both have become more frequent and more severe in recent years,” states Da Nian, a scientist at PIK and also author of the study.

The impact of forest loss does not stop at the borders of the Amazon. The moisture transported via the  Amazon’s so-called “flying rivers” is a critical part of the South American Monsoon and hence essential for rainfall in vast parts of the continent.  Moreover, the Amazon as a whole stores the carbon equivalent of 15 to 20 years of current human CO2 emissions. Amazon forest loss therefore further drives global warming and intensifies the consequences.

Greenhouse gas emissions and deforestation have to end

The study also analyses examples of disturbed forests in various parts of the Amazon to understand what could happen to the ecosystem. In some cases, the forest may recover in the future, but still remains trapped in a degraded state, dominated by opportunistic plants, such as lianas or bamboos. 

In other cases, the forest does not recover anymore, and remains trapped in an open-canopy, flammable state. The expansion of open, flammable ecosystems throughout the core of the Amazon forest is particularly concerning because they can spread fires to adjacent forests.

“To maintain the Amazon forest within safe boundaries, local and global efforts must be combined. Deforestation and forest degradation have to end, and restoration has to expand. Moreover, much more needs to be done to stop greenhouse-gas emissions world-wide,” concludes co-author Niklas Boers, leader of the Future Lab “Artificial Intelligence in the Anthropocene” at PIK and professor of Earth System Modelling at the Technical University of Munich/Germany.

(PIK/wi)

Reference:
Bernardo M. Flores et al.: Critical transitions in the Amazon forest system. Nature; 14 February 2024; [DOI: 10.1038/s41586-023-06970-0]

News Comments

Add a comment

×

Name is required!

Enter valid name

Valid email is required!

Enter valid email address

Comment is required!

Google Captcha Is Required!

You have reached the limit for comments!

* These fields are required.

Be the First to Comment