The Omo River in Ethiopia. The country has already built three hydropower schemes (Gibe I to III), fed by two dams on the Omo.
Photo: ©Shutterstock

Water resources – defusing conflict, promoting cooperation

The DAFNE project, funded by the European Union, has developed a methodology for avoiding conflicts of use in transboundary rivers. The model-based procedure allows for participatory planning and cooperative management of water resources. Now the aim is for the DAFNE methodology to be implemented in other regions of the world.

Rivers are lifelines for many countries. They create valuable ecosystems, provide drinking water for people and raw water for agriculture and industry. In the Global South in particular, there is strong competition for access to freshwater resources. The increasing use of hydropower has lately exacerbated this competition.

The network of interactions between water, energy, food and ecosystems – referred to by experts as the “water-energy-food (WEF) nexus” – often leads to wide-ranging disputes in the catchment areas of transboundary rivers. Large-scale infrastructure construction projects such as dams and irrigation schemes have caused political tensions between neighbouring states at various points in the past.

An international research team led by ETH Zurich in Switzerland has now developed a strategic toolkit that can help to defuse such conflicts over water use, through an objective analysis of stakeholder’s interests. In the EU’s Horizon 2020 project DAFNE, 14 research partners from Europe and Africa worked together to find approaches to a more equitable management of water resources.

“We wanted to show how it is possible to sustainably manage the nexus between water, energy, food and ecosystems, even in large and transboundary river basins with a wide range of users,” says Paolo Burlando, Professor of Hydrology and Water Resources Management at ETH Zurich.

Integrating and balancing different interests – a holistic approach is needed


While it is now recognised that watershed planning should take a holistic approach which respects the needs of all stakeholders, multidimensional decision-making problems with significant numbers of stakeholders make it difficult to negotiate generally accepted solutions.

“Conventional planning tools are usually overwhelmed with challenges such as these,” explains Burlando, who has led the DAFNE consortium for the past four years. This is why the project team developed a novel method to map and quantify trade-offs in the WEF nexus.

The approach is based on the principles of the participatory and integrated planning and management of water resources, which focuses on the role and interests of stakeholders. The DAFNE methodology is designed to engage stakeholders and identify compromises and synergies in a joint approach. “The key is to find solutions that benefit everyone, take the environment into account and also make economic sense,” explains Burlando.

Enabling dialogue through models


DAFNE uses state-of-the-art modelling techniques and digital solutions to enable participatory planning. A strategic decision tool allows the social, economic and environmental consequences of interventions to be assessed in a quantitative approach, enabling users to identify viable development pathways. Stakeholder-selected pathways are simulated in detail using a hydrological model driven by high-resolution climate scenarios, in order to accurately analyse the impact on the respective water resources. Additional sub-models can be used to model other aspects of the nexus. Finally, a visualisation tool helps to illustrate interrelationships and assess problems from various user perspectives.

“The models aim to facilitate continuous negotiation between stakeholders – which is a key element of the DAFNE approach,” says Senior Scientist Scott Sinclair, who co-developed the modelling approach.

(ETH/wi)

Reference:
Zaniolo M, Giuliani M, Sinclair S, Burlando P, Castelletti A. When timing matters – misdesigned dam filling impacts hydropower sustainability. Nat Commun 12, 3056 (2021), doi: 10.1038/s41467-021-23323-5

More information:
Dafne project website

News Comments

Add a comment

×

Name is required!

Enter valid name

Valid email is required!

Enter valid email address

Comment is required!

Captcha Code Can't read the image? Click here to refresh

Captcha is required!

Code does not match!

* These fields are required.

Be the First to Comment
Cookie settings