These are diseases that are transmitted by living organisms, including mosquitos, flies, ticks, aquatic snails, as well as rodents, between humans or from animals to humans. Thus, vector-borne diseases can also be zoonotic. One example of such a zoonotic vector-borne disease is West-Nile Fever, where wild birds form the pathogen reservoir and Culex mosquitos transmit the virus into the human and animal population. The complex transmission pathway is influenced by rural-urban dynamics, as agricultural practices, land-use changes and unplanned urbanisation, along with climatic factors, determine the spatial and temporal distribution and abundance of vectors and reservoirs. Rural-urban migration fuels slum formation in peri-urban areas, which are built with inferior materials, lack access to clean water and sanitation, and are often overcrowded, thus creating breeding sites for mosquitos, rats and other vectors. At the same time, agricultural intensification and land-use changes in rural areas affect the intensity of contact between reservoirs, vectors and humans, increasing transmission, while also driving vectors to seek new (urban) habitats.

Antimicrobial flows and resistance

The challenge of growing antimicrobial resistance (AMR) has been hailed the greatest threat to sustainable development by the WHO and forms a central pillar of the One Health concept.